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Abstract
The fractional variational principles within Riemann–Liouville fractional
derivatives in the presence of delay are analyzed. The corresponding Euler–
Lagrange equations are obtained and one example is analyzed in detail.

PACS number: 11.10.Ef

1. Introduction

The calculus of variations has communication with some branches of sciences and engineering,
e.g. differential equations, geometry, control theory, economics, electrical engineering and so
on [1–8]. Very recently, Heymans and Podlubny [8] analyzing a series of examples from
the field of viscoelasticity have proved that it is possible to assign a physical interpretation
meaning by using the Riemann–Liouville fractional derivatives.

For the last three decades, a considerable amount of research has advanced our
understanding of the effect of time delays on the behavior of a dynamic system. These
delays, which may either exist within the system’s internal states or are introduced through
a closed-loop feedback, produce complex dynamic responses [23–26]. The combined use
of fractional derivatives and delay [23] was investigated for the stability analysis of linear
fractional-differential system with multiple time scales [24].

In very recent years, the fractional variational principles have been developed and applied
to the control problems or physical problems [9–22]. The investigations on these issues are
based to a large degree on the replacement of the classical derivatives by the fractional ones,
especially Riemann–Liouville and Caputo fractional derivatives. Another issue is to apply the
fractional calculus properties for the fractional derivatives and fractional integrals, which are
the generalizations of the classical ones to any order α, and to obtain a series of new fractional
Euler–Lagrange, Hamilton and Hamilton–Jacobi equations.

However, it is found that the replacement of the classical derivatives with the fractional
ones produces a theory which differs from the classical one except for the limit when
α → 1. By following the above prescription, for a given fractional Lagrangian, non-locality is
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introduced naturally in fractional derivatives but not in the potential part. Therefore, to quantize
properly the fractional theories we have to introduce the non-locality into the potential part
too. This idea leads naturally to a Lagrangian theory with both fractional derivatives and delay.
To the best of our knowledge the variational principles combined with fractional derivatives
and delay have not been investigated yet in the literature. Despite several methods proposed
for the fractional quantization issue, none of them considered the implication of the delay and
fractional derivatives.

The main aim of this paper is to find the appropriate Euler–Lagrange equation for a
fractional Lagrangian possessing delay terms.

2. Basic definitions

In this section we mention some basic definitions and results which we use in the following
sections.

The left Riemann–Liouville fractional derivative is defined by

t1 Dα
t f (t) = 1

�(n − α)

(
d

dt

)n ∫ t

t1

(t − τ)n−α−1f (τ) dτ. (1)

The right Riemann–Liouville fractional derivative is defined by

tDα
t2
f (t) = 1

�(n − α)

(
− d

dt

)n ∫ t2

t

(τ − t)n−α−1f (τ) dτ, n = [Re(α)] − 1. (2)

The fractional derivative of a constant, interestingly, takes the form

t1 Dα
t C = C

(t − t1)
−α

�(1 − α)
, (3)

and the fractional derivative of a power of t has the following form,

t1 Dα
t (t − t1)

β = �(β + 1)(t − t1)
β−α

�(β − α + 1)
, (4)

for β > −1, α � 0.

The composite of fractional derivatives has the following form,

t1 Dα
t t1 Dσ

t f (t) = t1 Dα+σ
t f (t) −

k∑
j=1

t1 Dσ−j
t f (t)|t=t1

(t − t1)
−α−j

�(1 − α − j)
, (5)

where 0 � k −1 < σ � k, n−1 < α � n, α > 0, σ > 0, α +σ < n and k is a whole number.
The fractional product rule has the form

t1 Dα
t (fg) =

∞∑
j=0

(
α

j

) (
t1 Dα−j

t f
) (

dj g

dt j

)
. (6)

For α > 0, 1 � p � ∞, the function spaces t1I
α(Lp) and Iα

t2
(Lp) are defined by

t1I
α(Lp) = {f : f = t1I

αϕ, ϕ ∈ Lp(t1, t2)} (7)

and

Iα
t2
(Lp) = {f : f = Iα

t2
φ, φ ∈ Lp(t1, t2)} (8)

respectively. Here, t1I
α and Iα

t2
are the left and right Riemann–Liouville functional integrals,

respectively.
The following lemma presents the rules for fractional integration by parts over the whole

interval T = (t1, t2).
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Lemma 1. [1] Let α > 0, p, q � 1 and 1
p

+ 1
q

� 1 + α ( p �= 1 and q �= 1 in the case where
1
p

+ 1
q

= 1 + α)

(a) If ϕ ∈ Lp(t1, t2) and ψ ∈ Lq(t1, t2), then∫ t2

t1

ϕ(t)(t1I
αψ)(t) dt =

∫ t2

t1

ψ(t)
(
Iα
t2
ϕ
)
(t) dt. (9)

(b) If g ∈ Iα
t2
(Lp) and f ∈t1 Iα(Lq), then∫ t2

t1

g(t)
(
t1 Dα

t f
)
(t) dt =

∫ t2

t1

f (t)
(
t
Dα

t2
g
)
(t) dt. (10)

The above properties of the fractional derivatives make them suitable to describe complex
systems. The non-local effects encoded in the definition of the fractional derivatives are suitable
for describing the phenomena possessing a memory effect. A delay differential equation
represents a special type of functional differential equation (for more details see [23]). As is
known the delay differential equations are similar to ordinary differential equations; however
their evolution implies the past values of the state variable. As a result, the solution of delay
differential equations requires knowledge of not only the current state, but also of the state of
a previously given time. In addition to that the fractional delay variational problems may arise
in connection with nonconservative systems.

3. Fractional Euler–Lagrange equations with delay

First we state a lemma, which is an improvement on lemma 1, that will serve in proving the
main result in theorem 1.

Lemma 2. Let α > 0, p, q � 1, r ∈ T = (t1, t2) and 1
p

+ 1
q

� 1 + α (p �= 1 and q �= 1 in the

case where 1
p

+ 1
q

= 1 + α).

(a) If ϕ ∈ Lp(t1, t2) and ψ ∈ Lq(t1, t2), then∫ r

t1

ϕ(t)(t1I
αψ)(t) dt =

∫ r

t1

ψ(t)
(
Iα
r ϕ

)
(t) (11)

and hence,
if g ∈ Iα

t2
(Lp) and f ∈t1 Iα(Lq),

then ∫ r

t1

g(t)
(
t1 Dα

t f
)
(t) dt =

∫ r

t1

f (t)
(
t
Dα

r g
)
(t) dt. (12)

(b) If ϕ ∈ Lp(t1, t2) and ψ ∈ Lq(t1, t2), then∫ t2

r

ϕ(t)(t1I
αψ)(t) dt =

∫ t2

r

ψ(t)
(
Iα
t2
ϕ
)
(t) dt +

1

�(α)

∫ r

t1

ψ(t)

(∫ t2

r

ϕ(s)(s − t)α−1 ds

)
dt

and hence,

if g ∈ Iα
t2
(Lp) and f ∈t1 Iα(Lq), then∫ t2

r

g(t)
(
t1 Dα

t f
)
(t) dt =

∫ t2

r

f (t)
(
t
Dα

t2
g
)
(t) dt

− 1

�(α)

∫ r

t1

(
t1 Dα

t f
)
(t)

(∫ t2

r

(
t
Dα

t2
g
)
(s)(s − t)α−1 ds

)
dt
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which implies∫ t2

r

g(t)
(
t1 Dα

t f
)
(t) dt =

∫ t2

r

f (t)
(
t
Dα

t2
g
)
(t) dt

− 1

�(α)

∫ r

t1

f (t)tDα
r

(∫ t2

r

(
t
Dα

t2
g
)
(s)(s − t)α−1 ds

)
dt.

The proof is straightforward, by using theorem 3 of [27] to interchange the order of the
integrals. For the fractional derivative case the result follows by using the definition of the
function spaces t1I

α(Lq) and Iα
t2
(Lp).

In this section, we consider a modified problem when the fractional derivatives and delay
both appear in the Lagrangian. More exactly, we consider the following one-dimensional
problem:

minimize

J (y) =
∫ t2

t1

F(t, y(t),t1 Dα
t y(t), y(t − τ), y ′(t − τ)) dt, (13)

such that

y(t2) = b, y(t) = φ(t), t ∈ [t1 − τ, t1], t1 < t2, τ > 0, τ < t2 − t1. (14)

By using the corresponding delay notations [23], namely

yτ = y(t − τ), y ′
τ = y ′(t − τ) (15)

equation (13) becomes

J (y) =
∫ t2

t1

F(t, y(t),t1 Dα
t y(t), yτ , y

′
τ ) dt. (16)

The next step is to define the following directional derivative of J(y) at y(t,a) in the
direction of χ as follows:

J ′(y, χ) =
∫ t2

t1

[
Fyχ(t) +

∂F

∂
(
t1 Dα

t y(t)
) t1 Dα

t χ(t) + Fyτ
χτ + Fy ′

τ
χ ′

τ

]
dt. (17)

If y0(t) represents a solution of the previous variational problem we define the variation
of y with respect to a by χ(t) = ∂y(t,0)

∂a
, where y(t, a) denotes an admissible family obeying

y(t, 0) = y0(t) and a ∈ R such that 0 <| a |< ε.
The Taylor series expansion for y ∈ y(t, a) and J is

y(t, a) = y0(t) + aχ(t) + O(a2), t ∈ [t1, t2],
J (y(t, a)) = J (y0(t)) + aJ ′(y(t, 0), χ(t)) + O(a2).

(18)

As a result we obtain

J ′(y, χ) =
∫ t2

t1

[
Fyχ(t) +

∂F (t)

∂
(
t1 Dα

t y(t)
) t1 Dα

t χ(t) + Fyτ
χτ + Fy ′

τ
χ ′

τ

]
dt

=
∫ t2−τ

t1

[
(Fy(t) + Fyτ

(t + τ))χ(t) +
∂F (t)

∂
(
t1 Dα

t y(t)
) t1 Dα

t χ(t) + Fy ′
τ
(t + τ)χ ′(t)

]
dt

+
∫ t2

t2−τ

(
Fy(t)χ(t) +

∂F (t)

∂
(
t1 Dα

t y(t)
) t1 Dα

t χ(t)

)
dt. (19)

In the above, we have made a change of variables for t − τ and have used the fact that χ = 0
on [t1 − τ, t1].
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Now, if we apply the usual integration by parts and the fractional version stated in lemma
2 with f = χ , we obtain

J ′(y, χ) =
∫ t2−τ

t1

[
Fy(t) + Fyτ

(t + τ) + tDα
t2−τ

∂F (t)

∂
(
t1 Dα

t y(t)
)

− 1

�(α)
tDα

t2−τ

∫ t2

t2−τ

[
tDα

t2

(
∂F (t)

∂
(
t1 Dα

t y(t)
)
) ]

(z)(z − t)α−1 dz

− dFy ′
τ
(t + τ)

dt

]
χ(t) dt +

∫ t2

t2−τ

(
Fy(t) +t Dα

t2

(
∂F (t)

∂
(
t1 Dα

t y(t)
)
))

χ(t) dt

+
(
Fy ′

τ
(t + τ)

)
χ(t)|(t2−τ)−

t1 = 0. (20)

Therefore, by taking into account (20) we obtain the following theorem:

Theorem 1. Let J(y) be a functional of the form

J (y) =
∫ t2

t1

F(t, y(t), t1 Dα
t y(t), y(t − τ), y ′(t − τ)) dt, (21)

defined on a set of continuous functions y(t) which have continuous left fractional derivative
of order α in [t1, t2] and satisfy the conditions y(t) = φ(t), t ∈ [t1 − τ, t1] and y(t2) = a2.
Also let F : [t1, t2] × R4 → R have continuous partial derivatives with respect to all of its
parameters and φ(t) be smooth. Then the necessary condition for J(y) to possess an extremum
for a given function y(t) is that y(t) fulfils the following Euler–Lagrange equations:

Fy(t) + Fyτ
(t + τ) + tDα

t2−τ

∂F (t)

∂
(
t1 Dα

t y(t)
) − dFy ′

τ
(t + τ)

dt

− 1

�(α)
tDα

t2−τ

∫ t2

t2−τ

[
tDα

t2

(
∂F (t)

∂
(
t1 Dα

t y(t)
)
)]

(z)(z − t)α−1 dz = 0, (22)

for t1 � t � t2 − τ ,

Fy(t) +t Dα
t2

(
∂F (t)

∂
(
t1 Dα

t y(t)
)
)

= 0, (23)

for t2 − τ � t � t2, as well as the boundary condition

Fy ′
τ
(t + τ)χ(t)|(t2−τ)−

t1 = 0. (24)

It is observed from (22), (23) and (24) that when the delay terms are removed and in the
limit α → 1, the classical results are reobtained.

3.1. Generalization

In several physical applications or in control theory the variational principles are very useful.
The generalization of the previous theorem to the case of fixed end points and several functions
is discussed below.

We assume that the functional J (y1, y2, . . . , yn) is given by

J (y1, y2, . . . , yn) =
∫ t2

t1

F(t, y1(t), . . . yn(t), t1 Dα
t y1(t) . . . , t1 Dα

t yn(t),

y1(t − τ), . . . , yn(t − τ), y ′
1(t − τ), . . . , y ′

n(t − τ)) dt, (25)

5
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and it satisfies the following boundary conditions

yi(t2) = yit2 , yi(b) = yib, yi(t) = φi(t),

i = 1, . . . , n, t ∈ [t1 − τ, t1], t1 < t2, τ > 0, τ < t2 − t1. (26)

Theorem 2. Assume that F has continuous partial derivatives with respect to all of its
parameters and φi, i = 1, 2, . . . , n are smooth. Then the necessary condition for the curves
yi = yi(t), i = 1, . . . , n, fulfilling the conditions (26) to be an extremal of the functional (25)
is that

Fyi
(t) + Fyiτ (t + τ) + tDα

t2−τ

∂F (t)

∂
(
t1 Dα

t yi(t)
) − dFyiτ ′(t + τ)

dt

− 1

�(α)
tDα

t2−τ

∫ t2

t2−τ

[
tDα

t2

(
∂F (t)

∂
(
t1 Dα

t yi(t)
)
)]

(z)(z − t)α−1 dz = 0, (27)

for t1 � t � t2 − τ ,

Fyi
(t) +t Dα

t2

(
∂F (t)

∂
(
t1 Dα

t yi(t)
)
)

= 0, (28)

for t2 − τ � t � t2 and the boundary conditions(
Fyiτ ′

)
(t + τ)χ(t) |(t2−τ)−

t1 = 0, (29)

for i = 1, . . . , n.

The proof can be done in the same manner as for theorem 1.

4. Example

In order to exemplify our results we analyze an example of physical interest. Namely, let us
consider the following action,

J =
∫ t2

t1

[
1

2

(
t1 Dα

t y(t)
)2 − V (y(t − τ))

]
dt, (30)

subject to the condition

y(t) = φ(t), t ∈ [t1 − τ, t1]. (31)

The corresponding Euler–Lagrange equation is as follows,

−∂V (t + τ)

∂yτ

+ tDα
t2−τ t1 Dα

t y(t) − 1

�(α)
tDα

t2−τ

∫ t2

t2−τ

[
tDα

t2

(
t1 Dα

t y(t)
)]

(z)(z − t)α−1 dz = 0,

(32)

for t1 � t � t2 − τ and

tDα
t2

(
t1 Dα

t y(t)
) = 0, (33)

for t2 − τ � t � t2. We observe that when the delay is removed as well as α → 1 the classical
Euler–Lagrange equations are reobtained.
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5. Conclusion

The variational principles of mechanics are general, invariant, mathematically formulated
statements from which we can deductively derive classical mechanics as a part of physical
theory. The generalization of the classical variational principles leads us to some new type
of Euler–Lagrange equations involving both the left and the right derivatives. These aspects
are coming into the picture due to the fractional integration by parts. The corresponding
equations are good candidates in describing the nonlocal effects. In previous studies in this
area the potential part was kept local but the non-locality was added by replacing the classical
derivatives with the fractional ones. However, new methods should be developed in the field
of fractional calculus in order to describe better the complex systems possessing non-local
effects.

In this paper we have obtained the Euler–Lagrange equations for a Lagrangian containing
the fractional derivatives and the delay. The fractional integration by parts in the presence of
the delay was obtained and used further to derive the corresponding Euler–Lagrange equations.
When the delay is absent the corresponding fractional Euler–Lagrange equations are obtained.
The classical Euler–Lagrange equations are reobtained when α → 1 and the delay is absent.
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